The Real Arctangent Function
Theorem: Injectivity of the Real Tangent Function
The restriction of the Real Tangent Function on the interval and thus admits an inverse function on it.
PROOF
TODO
Definition: Real Arctangent Function
The real arctangent function is the inverse function of the restriction of the Real Tangent Function on the interval .
NOTATION
Note: Domain of the Real Arctangent Function
The domain of the Real Arctangent Function is .
Note: Domain of the Real Arctangent Function
The image of the Real Arctangent Function is the interval .
Properties
Theorem: Continuity of the Real Arctangent Function
The Real Arctangent Function is continuous.
PROOF
TODO
Theorem: Derivative of the Real Arctangent Function
Theorem: Antiderivatives of the Real Arctangent Function