The Real Arccotangent Function
Theorem: Injectivity of the Real Cotangent Function
The restriction of the Real Cotangent Function on the interval and thus admits an inverse function on it.
PROOF
TODO
Definition: Real Arccotangent Function
The real arccotangent function is the inverse function of the restriction of the Real Cotangent Function on the interval .
NOTATION
Note: Domain of the Real Arctangent Function
The domain of the Real Cotangent Function is .
Note: Domain of the Real Arctangent Function
The image of the Real Cotangent Function is the interval .
Properties
Theorem: Continuity of the Real Arccotangent Function
The Real Arccotangent Function is continuous.
PROOF
TODO
Theorem: Derivative of the Real Arccotangent Function
Theorem: Antiderivatives of the Real Arccotangent Function