The Real Exponential Function

Theorem: The Real Exponential Function

The real power series converges for all .

Definition: The Real Exponential Function

The real exponential function is the real analytic function defined by this real power series.

NOTATION

Exponentiation

Definition: Exponentiation

Let and be real numbers.

We define the exponentiation as

a^b \overset{\text{def}}{=} \left\{ \begin{array}{l@{\quad}l} 1 & \text{if } a \ne 0, b = 0 \\ \underset{b\text{ times}}{\underbrace{a \times \cdots \times a}} & \text{if } b \in \mathbb{N} \\ \sqrt[n]{a^m} & \text{if } b = \frac{m}{n} \text{ with } m,n \in \mathbb{N} \end{array} \right.