Razon

Home

❯

Mathematics

❯

Geometry

❯

Euclidean Geometry

❯

Euclidean Space

❯

Coordinate Systems for Euclidean Space

❯

Coordinate Transformations

Coordinate Transformations

Jul 07, 20255 min read

  • coordinate-systems
  • euclidean-geometry
  • geometry
  • mathematics

Theorem: Cartesian ↔ Polar

If p∈R2 has Cartesian coordinates (x,y), then its polar coordinates (r,θ) are:

  • Using the convention r≥0 and θ∈(−π;π]:
rθ​=x2+y2​=⎩⎨⎧​arctan(xy​)if x>0arctan(xy​)+π if x<0,y≥0arctan(xy​)−π if x<0,y<02π​if x=0,y>0−2π​ if x=0,y<00 if x=y=0​​
  • Using the convention r≥0 and θ∈[[PolarCoordinateSystem∣0;2π):
rθ​=x2+y2​=⎩⎨⎧​arccosx2+y2​x​ if y>02π−arccosx2+y2​x​if y<00,,,,if y=0,x≥0π,,,,if y=0,x<0​​

If p∈R2 has [polar coordinates]] (r,θ), then its Cartesian coordinates (x,y) are

xy​=rcosθ=rsinθ​

PROOF

TODO

Theorem: Cartesian ↔ Spherical

If p∈R3 has Cartesian coordinates (x,y,z), then its spherical coordinates (r,θ,ϕ) are:

  • Using the convention r≥0, θ∈[0;π] and ϕ∈(−π;π]:
rθϕ​=x2+y2+z2​={0,,,,,if x=y=z=0arccosx2+y2+z2​z​,,,,otherwise ​=⎩⎨⎧​arctan(xy​)if x>0arctan(xy​)+π if x<0,y≥0arctan(xy​)−π if x<0,y<02π​if x=0,y>0−2π​ if x=0,y<00 if x=y=0​​
  • Using the convention r≥0, θ∈[0;π] and ϕ∈[[SphericalCoordinateSystem∣0;2π):
rθϕ​=x2+y2+z2​={0,,,,,if x=y=z=0arccosx2+y2+z2​z​,,,,otherwise ​=⎩⎨⎧​arccosx2+y2​x​ if y>02π−arccosx2+y2​x​if y<00,,,,if y=0,x≥0π,,,,if y=0,x<0​​

If p∈R3 has [spherical coordinates]] (r,θ,ϕ), then its Cartesian coordinates (x,y,z) are

xyz​=rsinθcosϕ=rsinθsinϕ=rcosθ​

PROOF

TODO

Theorem: Cartesian ↔ Cylindrical

If p∈R3 has Cartesian coordinates (x,y,z), then its Cylindrical coordinates (ρ,ϕ,z) are:

  • Using the convention ρ≥0 and ϕ∈(−π;π]:
ρϕz​=x2+y2​=⎩⎨⎧​arctan(xy​)if x>0arctan(xy​)+π if x<0,y≥0arctan(xy​)−π if x<0,y<02π​if x=0,y>0−2π​ if x=0,y<00 if x=y=0​=z​
  • Using the convention ρ≥0 and ϕ∈[[CylindricalCoordinateSystem∣0;2π):
ρϕz​=x2+y2​=⎩⎨⎧​arccosx2+y2​x​ if y>02π−arccosx2+y2​x​if y<00,,,,if y=0,x≥0π,,,,if y=0,x<0​=z​

If p∈R3 has [Cylindrical coordinates]] (ρ,ϕ,z), then its Cartesian coordinates (x,y,z) are

xyz​=ρcosϕ=ρsinϕ=z​

PROOF

TODO


Graph View

Created with Quartz v4.5.1 © 2025

  • GitHub
  • YouTube