Razon

Home

❯

Mathematics

❯

Analysis

❯

Real Analysis

❯

Real Vector Functions

❯

Parametric Surfaces

❯

Surface Normal Vector

Surface Normal Vector

Jul 12, 20251 min read

Definition: SurfaceNormal Vector

Let s:D⊆R2→R3 be a Parametric Surface which is differentiable at a.

The normal vector of s at a is the cross product of s‘s partial derivatives with respect to Cartesian coordinates:

∂x∂s​(a)×∂y∂s​(a)

NOTATION

The normal vector is often denoted as N or N(a) and the unit normal vector as n.

NOTE

The normal vector is sometimes also called just the surface normal.


Graph View

Created with Quartz v4.5.1 © 2025

  • GitHub
  • YouTube